
Documentation
Blib Docs

API

Buffers
Strings
Hashes
Dictionaries
Windows Functionality

API

API

Buffers
This page contains the primitives and their associated functions for buffer primitives within blib.
While the measured buffers support the valloc family of allocators, the Measured Buffer helper
functions all use the halloc family, so halloc should be used where possible.

MeasuredBuffers
A general-purpose container for a defined number of MeasuredBuffers.

Initialisers
MeasuredBuffers* hallocMeasuredBuffers(DWORD count)
Allocates the measured buffers on the heap using the halloc family.

void hfreeMeasuredBuffers(MeasuredBuffers* buffers)
Frees the container and the subsequent pointers for each of the measured buffers allocated within
the container IF the buffer is not NULL.

MeasuredBuffer
A general-purpose buffer with an assigned length up to DWORD bytes.

typedef struct _Container_MeasuredBuffer {
 DWORD count;
 MeasuredBuffer** members;
} Strings, MeasuredBuffers;

typedef struct _MeasuredBuffer {
 DWORD length;
 char* buffer;

Initialisers
MeasuredBuffer* vallocMeasuredBuffer(DWORD bytes)
Allocated a measured buffer DWORD bytes using valloc .

void vfreeMeasuredBuffer(MeasuredBuffer* buffer)
Frees a measured buffer AND its content buffer using the valloc family.

MeasuredBuffer* hallocMeasuredBuffer(DWORD bytes)
Allocated a measured buffer DWORD bytes using halloc .

void hfreeMeasuredBuffer(MeasuredBuffer* buffer);
Frees a measured buffer AND its content buffer using the halloc family.

MeasuredBuffer*
bDeepCopyMeasuredBuffer(MeasuredBuffer* src)
Deep Copies a Measured Buffer 'src' and returns the pointer. This function uses the halloc family.

void bDeepCopyMeasuredBufferBuffer(MeasuredBuffer*
dest, MeasuredBuffer* src);
Deep copies a Measured Buffer 'src' to the Measured Buffer 'dest'. This function allocates dest->buffer
using the halloc family with the length of the original buffer. This frees the dest->buffer if it exists
using halloc first.

Methods
BOOL bEncryptMeasuredBufferEx(void* algorithm, long*
key, unsigned int keyLength, MeasuredBuffer* buffer)
Symmetrically encrypts or decrypts a MeasuredBuffer using the user supplied void algorithm .

} MeasuredBuffer, String;

DWORD bInterpetMeasuredBuffer(char* data,
MeasuredBuffer* buffer)
Initialises and popualtes a measured buffer from data using valloc .

DWORD bWriteMeasuredBuffer(HANDLE hFile,
MeasuredBuffer* buffer)
Writes a measured buffer buffer to a file hFile .

DWORD bReadMeasuredBuffer(HANDLE hFile,
MeasuredBuffer* buffer)
Writes a measured buffer buffer to a file hFile .

CryptoBuffer
A 'cryptographic' primitive composed of two MeasuredBuffer s and a metadata element for an
encryption type.

Methods
DWORD bSizeOfCryptoBuffer(CryptoBuffer* buffer)

typedef enum _BLIB_ENCRYPTION_METHOD {
 BLIB_ENCRYPTION_NONE,
 BLIB_ENCRYPTION_UNDEFINED,
 BLIB_ENCRYPTION_STATIC_XOR,
} BLIB_ENCRYPTION_METHOD;

typedef struct _EncryptedBuffer{
 BLIB_ENCRYPTION_METHOD encryptionMethod;
 MeasuredBuffer keyBuffer;
 MeasuredBuffer dataBuffer;
} CryptoBuffer;

Returns the DWORD size of the entire CryptoBuffer struct including all members and their
respective buffers.

DWORD bInterpretCryptoBuffer(char* data, CryptoBuffer*
buffer)
Interprets the memory located in data and populates the fields into buffer using
bInterpretMeasuredBuffer.

DWORD bWriteCryptoBuffer(HANDLE hFile, CryptoBuffer*
buffer)
Writes a CryptoBuffer to a file.

DWORD bReadCryptoBuffer(HANDLE hFile, CryptoBuffer*
buffer)
Reads a CryptoBuffer to a file.

BOOL bEncryptBuffer(CryptoBuffer* buffer)
Symmetrically encrypts or decrypts a CryptoBuffer using the accompanying method defined in the
encryptionMethod field of the CryptoBuffer .

BOOL bEncryptBufferEx(void* algorithm, CryptoBuffer*
buffer)
Symmetrically encrypts or decrypts a CryptoBuffer using the user supplied void algorithm .

API

Strings
This page contains documentation about string types, including the hashing functions native to
blib.

String

Initialisers
String* vallocString(PBYTE text)

Uses valloc to allocate String .

String* hallocString(PBYTE text)

Uses halloc to allocate a String .

Methods
unsigned int rapidStringscmp(String* source, Strings*
samples)

typedef struct _MeasuredBuffer {
 DWORD length;
 char* buffer;
} String, MeasuredBuffer;

This function creates a deepcopy of `text` and does not free the original buffer.

This function creates a deepcopy of `text` and does not free the original buffer.

Returns the index of the sample String within the Strings that matches the String 'source'. Else
returns -1 if none is found.

unsigned int rapidncmp (String source, unsigned int n,
String* samples)
Compares a String source against an array of String . Returns the index of the matching String , or -
1 if none are found.

unsigned int rapidstrcmp (String s1, String s2)
Compares two String s, s1 and s2 . Returns 0 if both strings are the same, or the first index if they
differ. Returns -1 if the strings are not of the same length.

Generic char* Functions
Methods
DWORD bSplitToStrings(PBYTE string, char c,
MeasuredBuffers** buffers)

Returns the number of substrings when splitting the input 'string' on the character 'c'. This
populates the 'buffers' pointer with an array of MeasuredBuffers. An example usage is provided
below where the Strings struct is used as the MeasuredBuffer** array.

This function is unsafe and may result in accessing illegal memory if there are no gaurd null-
bytes on the source.

This function returns up to a maximum of BLIB_MAXIMUM_SUBSTRINGS defined at the blib
compile time. Additionally, this returns a maximum size of BLIB_MAXIMUM_SUBSTRING_SIZE
for each of the given substrings. This function does NOT include the nullbyte and performs
an in-place copy, so a substring of BLIB_MAXIMUM_SUBSTRING_SIZE length will NOT have a
guard null byte.

 Strings* strings;
 bWideCharToByte(cStr, index);
 DWORD dwStringCount = bSplitToStrings(cStr, '=', &strings);

DWORD bSafeWideCharToByte(PBYTE dest, const PWCHAR
source, PDWORD buffSize)

If the destination is NULL this functions returns the buffer size required in 'buffSize'. Otherwise, this
function performs the widechar -> byte conversion and returns the length of the new buffer uszed
in buffSize. This function adds and calculates the null byte '\0' in the destination.

DWORD bWideCharToByte(PBYTE dest, const PWCHAR
source)

Converts a source wide char to the designated destination.

unsigned int bstrlen(PBYTE string)

Returns the index of the first nullbyte.

 if(dwStringCount == 1){
 hfreeMeasuredBuffers(strings);
 index += length;
 continue;
 }
 cprintf("%s : %s\n", strings->members[0]->buffer, strings->members[1]->buffer);

This function is unsafe and may result in accessing illegal memory if there are no gaurd null-
bytes on the source.

This function is unsafe and may result in accessing illegal memory if there are no gaurd null-
bytes on the source.

This function is unsafe and may result in accessing illegal memory if there are no gaurd null-
bytes.

API

Hashes
This page details the hashing functions for blib.

MiniHash
The Blib MiniHash is not cryptographically secure, but is a fast way to evaluate two arbitrary values
where small collision chances are possible. Ideally, this can be used when searching for a string
against a known string hash.

Methods
void blibMiniHashInit(DWORD seed)
Required function to initialise the blibMiniHash function with a seed seed .

DWORD blibMiniHash(PBYTE cstring)

This function returns a `DWORD` using the following function:

This function should be used only to validate that two things are 'similar' where exactness is not
required. There is a low memory cost to using this.

This function is dangerous. It assumes that there is a C-styled string with a guard nullbyte.

DWORD blibMiniHash(PBYTE cstring){
 int index = 0;
 long returnValue = BLIB_MINIHASH_SEED;
 while(cstring[index] != '\0' && cstring[index] != '\n'){
 returnValue += (index * cstring[index]);
 index++;
 }
 return returnValue;
}

DWORD blibMiniHashString(String* stirng)
This function performs the blibMiniHash using the seeded value.

API

Dictionaries
This page contains a definition for the MeasuredDictionary functionality within blib. This entity uses
measuredbuffers for all members, including keys and values.

Measured Dictionary

Initialisers
MeasuredDictionary* MDnew(DWORD initialCapcity)
Allocates the keys, values, and tombstones immediately on the heap up to initialCapacity.

void MDfree(MD* dict);
Frees the dictionary and its allocations.

Measured Dictionaries uses the halloc family to allocate on the heap. Keys are freed using
hfree so values manually entered should be done using the halloc family.

Measured Dictionaries will automatically resize at capacity. This requires calling hrealloc
three times. At a future version this will be optimised to a single halloc call by stacking the
keys, values, and tombstones arrays.

typedef struct _MeasuredDict {
 DWORD count;
 DWORD capacity;
 WORD* tombstones;
 DWORD dwTombstones;
 MeasuredBuffer* keys;
 MeasuredBuffer* values;
} MeasuredDictionary, MD, Dictionary, Dict;

Methods

BOOL MDadd(MD* dict,MeasuredBuffer* key,
MeasuredBuffer* value)
Adds a Measured Buffer 'value' with a Measured Buffer 'key' to the dictionary dict. Returns TRUE on
success.

MeasuredBuffer* MDget(MD* dict,MeasuredBuffer* key);
Returns a pointer to the Measured Buffer value that corrosponds to the Measured Buffer 'key'. Returns
NULL on failure and sets the last error to BLIB_ERROR_KEY_NOT_FOUND .

BOOL MDset(MD* dict,MeasuredBuffer* key,
MeasuredBuffer* value);
Sets the Measured Buffer 'value' to the Measured Buffer 'key' within dict. Returns TRUE on success,
FALSE on fail. If this function fails, the error can be queried with bGetLastError. This should fail with
BLIB_ERROR_KEY_NOT_FOUND .

BOOL MDremove(MD* dict,MeasuredBuffer* key)

Unsets the key and frees the data fields of the key and value for the buffers pointed to by this
element. Returns TRUE on success and FALSE on failure.

unsigned int MDcontainsKey(MD* dict, MeasuredBuffer*
key);
Returns the index of the Measured Buffer key within the dict. Returns -1 upon failure and sets the
error code BLIB_ERROR_KEY_NOT_FOUND .

MDget and MDremove contain PBYTE* cstring variants MDgetS and MDremoveS for querying
with an intermediate cstring that is freed after use.

This function result in a double free at this point in time if the values are freed elsewhere in
the code.

API

Windows Functionality
This page details some windows functionality for Blib processes.

General

BLIB_ENV bGetEnv();
Returns a BLIB_ENV struct from the TEB->PEB.

UNICODE_STRING* blibGetCmdLine()
Returns a pointer tto the UNICODE_STRING within the PEB.

#include <blibwin.h>

typedef struct _BLIB_ENV {
 unsigned int size;
 WCHAR* env;
} ENV, BLIB_ENV;

