
Strings
This page contains documentation about string types, including the hashing functions native to
blib.

String

Initialisers
String* vallocString(PBYTE text)

Uses valloc to allocate String .

String* hallocString(PBYTE text)

Uses halloc to allocate a String .

Methods
unsigned int rapidStringscmp(String* source, Strings*
samples)
Returns the index of the sample String within the Strings that matches the String 'source'. Else
returns -1 if none is found.

typedef struct _MeasuredBuffer {
 DWORD length;
 char* buffer;
} String, MeasuredBuffer;

This function creates a deepcopy of `text` and does not free the original buffer.

This function creates a deepcopy of `text` and does not free the original buffer.

unsigned int rapidncmp (String source, unsigned int n,
String* samples)
Compares a String source against an array of String . Returns the index of the matching String , or -
1 if none are found.

unsigned int rapidstrcmp (String s1, String s2)
Compares two String s, s1 and s2 . Returns 0 if both strings are the same, or the first index if they
differ. Returns -1 if the strings are not of the same length.

Generic char* Functions
Methods
DWORD bSplitToStrings(PBYTE string, char c,
MeasuredBuffers** buffers)

Returns the number of substrings when splitting the input 'string' on the character 'c'. This
populates the 'buffers' pointer with an array of MeasuredBuffers. An example usage is provided
below where the Strings struct is used as the MeasuredBuffer** array.

This function is unsafe and may result in accessing illegal memory if there are no gaurd null-
bytes on the source.

This function returns up to a maximum of BLIB_MAXIMUM_SUBSTRINGS defined at the blib
compile time. Additionally, this returns a maximum size of BLIB_MAXIMUM_SUBSTRING_SIZE
for each of the given substrings. This function does NOT include the nullbyte and performs
an in-place copy, so a substring of BLIB_MAXIMUM_SUBSTRING_SIZE length will NOT have a
guard null byte.

 Strings* strings;
 bWideCharToByte(cStr, index);
 DWORD dwStringCount = bSplitToStrings(cStr, '=', &strings);
 if(dwStringCount == 1){
 hfreeMeasuredBuffers(strings);
 index += length;

DWORD bSafeWideCharToByte(PBYTE dest, const PWCHAR
source, PDWORD buffSize)

If the destination is NULL this functions returns the buffer size required in 'buffSize'. Otherwise, this
function performs the widechar -> byte conversion and returns the length of the new buffer uszed
in buffSize. This function adds and calculates the null byte '\0' in the destination.

DWORD bWideCharToByte(PBYTE dest, const PWCHAR
source)

Converts a source wide char to the designated destination.

unsigned int bstrlen(PBYTE string)

Returns the index of the first nullbyte.

 continue;
 }
 cprintf("%s : %s\n", strings->members[0]->buffer, strings->members[1]->buffer);

This function is unsafe and may result in accessing illegal memory if there are no gaurd null-
bytes on the source.

This function is unsafe and may result in accessing illegal memory if there are no gaurd null-
bytes on the source.

This function is unsafe and may result in accessing illegal memory if there are no gaurd null-
bytes.

Revision #3
Created 2 August 2024 18:11:04 by lepus
Updated 11 August 2024 12:31:25 by lepus

